Acquired Resistance Signal Transduction in Arabidopsis Is Ethylene Independent.
نویسندگان
چکیده
To clarify the role of ethylene in systemic acquired resistance (SAR), we conducted experiments using Arabidopsis ethylene response mutants. Plants that are nonresponsive to ethylene (i.e., [theta]tr1 and [theta]in2) showed normal sensitivity to the SAR-inducing chemicals salicylic acid (SA) and 2,6-dichloroisonicotinic acid with respect to SAR gene induction and pathogen resistance. This indicated that chemically induced SAR is not an ethylene-dependent process in Arabidopsis. Ethephon, an ethylene-releasing chemical, induced SAR gene expression in both the wild type and ethylene mutants, whereas ethylene alone did not, suggesting that induction of these genes by ethephon is not due to the action of ethylene. Furthermore, transgenic plants expressing salicylate hydroxylase, a bacterial enzyme that degrades SA to catechol, did not accumulate SAR mRNAs in response to ethephon. Thus, SAR gene induction by ethephon appears to be mediated through SA. Other experiments suggested that ethylene may play a role in SAR by enhancing tissue sensitivity to the action of SA.
منابع مشابه
A novel signaling pathway controlling induced systemic resistance in Arabidopsis.
Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquire...
متن کاملThe Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent.
The Arabidopsis NPR1 gene was previously shown to be required for the salicylic acid (SA)- and benzothiadiazole (BTH)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. The dominant ssi1 (for suppressor of SA insensitivity) mutation characterized in this study defines a new component of the SA signal transduction pathway that bypasses the requirement of NPR1...
متن کاملRoles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis.
Disease resistance in Arabidopsis is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling molecules. Epistasis analyses were performed between mutants that disrupt these pathways (npr1, eds5, ein2, and jar1) and mutants that constitutively activate these pathways (cpr1, cpr5, and cpr6), allowing explorat...
متن کاملSystemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application.
Root colonization of Arabidopsis thaliana by the nonpathogenic, rhizosphere-colonizing, biocontrol bacterium Pseudomonas fluorescens WCS417r has been shown to elicit induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst). The ISR response differs from the pathogen-inducible systemic acquired resistance (SAR) response in that ISR is independent of salicylic acid and not ...
متن کاملImpaired fungicide activity in plants blocked in disease resistance signal transduction.
Fungicide action is generally assumed to be dependent on an antibiotic effect on a target pathogen, although a role for plant defense mechanisms as mediators of fungicide action has not been excluded. Here, we demonstrate that in Arabidopsis, the innate plant defense mechanism contributes to the effectiveness of fungicides. In NahG and nim1 (for noninducible immunity) Arabidopsis plants, which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 6 5 شماره
صفحات -
تاریخ انتشار 1994